Weizmann Institute of Science

Deep Learning for Computer Vision:
Fundamentals and Applications
[Home | Schedule | Moodle]
Lecture Topic Instructor Course Materials Assignments
1 Introduction. Basics of ML Assaf slides (pdf)
video
1st assignment
2 Classification methods Lior slides (pdf)
video
3 Neural networks Assaf slides (pdf)
video
4 PyTorch Rafail slides (pdf)
video
5 Convolutional neural networks Assaf slides (pdf)
video
2nd assignment
6 Practical training Shai slides (pdf)
video
weight init notebook
7 Architectures Rafail slides (pdf)
video

8 Visualizing and understanding neural networks Tali slides (pdf)
video
9 Advanced PyTorch Rafail slides (pdf)
video
3rd assignment
10 Adversarial examples Niv Haim slides (pdf)
video
11 Sequences and Attention Shai slides (pdf)
video (older version)
12 Vision Transformers Shai slides (pdf)
video
13 Generative Models Assaf slides (pdf)
video
14 Advanced Generative Models Tali slides (pdf)
video
4th assignment
15 Self supervision (I) Tali slides (pdf)
video
16 Self supervision (II) Shai slides (pdf)
video
17 Computer Graphics and Rendering Meirav slides (pdf)
video
18 Implicit 3D representations (I) Meirav slides (pdf)
video
19 Implicit representations (II) Lior slides (pdf)
video
20 Learning from videos Tali slides (pdf)
video
21 Detection and Segmentation (I) Shai slides (pdf)
video
22 Image and Text Rafail slides (pdf)
video
23 Detection and Segmentation (II) Lior slides (pdf)
video
24 Parallel GPU Shai slides (pdf)
video